

The University of Manchester

An Integrated Active Learning Environment for Advanced Engineering Mathematics

Igor Chernyavsky, William Lionheart & Colin Steele Department of Mathematics, University of Manchester

> FSE TA Mini-Conference: "Emerging Stronger" 28th May 2021

Acknowledgements

Support

Maths T&L Office

UoM e-Learning Team

Infrastructure

Chris Sangwin and STACK Users Group (Edinburgh)

plazza

Advanced Engineering Mathematics MATH29681

- Year 2 course unit of three parts (Integral Transforms, Vector Calculus & Linear Algebra)
- Two unit leaders
- 250+ students from Electrical and Electronic Engineering
- Highly diverse background and level of training (including direct-entry overseas students)

T&L Environment

www.conference.manchester.ac.uk

Advanced Engineering Mathematics MATH29681

2019/20 Structure

Advanced Engineering Mathematics MATH29681

Piazza

- Integrated in Blackboard
- Peer-to-peer and lecturer-led support
- Anonymous re-posting replaces emails
- Live and persistent polls
- LaTeX support, etc.

no unread posts

2 unanswered questions

no unresolved followups

license status	license not needed	
117	total posts	
1270	total contributions	
97	instructors' responses	
28	students' responses	
	-	

122 min avg. response time

..out of 240 (estimated) Edit

238 enrolled

Student Enrollment

Piazza

- Integrated in Blackboard
- Peer-to-peer and lecturer-led support
- Anonymous re-posting replaces emails
- Live and persistent polls
- LaTeX support, etc.

$$egin{aligned} \mathcal{L}(f(t)) &= \int_0^\infty f(t) e^{-st} dt \ &rac{\mathrm{d}ar{\mathrm{f}}(\mathrm{s})}{\mathrm{d} \mathrm{s}} &= rac{\mathrm{d}}{\mathrm{d} \mathrm{s}} \int_0^\infty f(t) e^{-st} dt \end{aligned}$$

Use Leibniz's integral rule to switch the integral with the derivative sign

$$\begin{split} \frac{\mathrm{d}f(s)}{\mathrm{d}s} &= \int_0^\infty (\frac{\partial}{\partial s} f(t) e^{-st}) dt \\ &= \int_0^\infty -t f(t) e^{-st} dt \\ \text{So the inverse Laplace transform is } -t f(t) \end{split}$$

I think you could use this part of the tables:

Let
$$\tilde{f}(s) = \mathcal{L} \{f(t)\}$$
 then

$$\mathcal{L}\left\{e^{at}f(t)\right\} = \tilde{f}(s-a),$$

$$\not\leftarrow \mathcal{L}\left\{tf(t)\right\} = -\frac{d}{ds}(\tilde{f}(s)),$$

$$\mathcal{L}\left\{\frac{f(t)}{t}\right\} = \int_{x=s}^{\infty} \tilde{f}(x)dx \text{ if this exists.}$$

~ An instructor (Dr Igor Chernyavsky) endorsed this answer ~

Piazza: Polling

Explanation: Correct answer: No.

STACK + Moodle

- Robust randomisation
- Carry-through calculation errors and consistent marking
- Instant (or deferred) and detailed feedback

STACK + Moodle

- Robust randomisation
- Carry-through calculation errors and consistent marking
- Instant (or deferred) and detailed feedback
- Could be mixed with semi-automatic marking:
 - short textual justification
 - uploading a graph sketch

(c) By solving a differential equation of the form $\dot{y} = Dy$, where D is diagonal, find the solution of the differential equation $\dot{x} = Ax$, with $x(0) = \begin{bmatrix} 5\\ -3 \end{bmatrix}$.		* The acceptable file formats are: PDF, PNG and JPEG. Please use a camera flash when making the scan and crop the picture, making sure the image has the correct orientation and the file size is less than 2 MB. Unreadable scans with poor contrast will not be marked. Maximum size for new files: 5MB, maximum attachments: 1
$x(t) = \begin{bmatrix} ? \\ \hline ? \\ \hline ? \\ \hline \end{bmatrix} \text{(express your answer in terms of variable t)}$		E Eles
Describe in words what happens as $t o \infty$ [50 words maximum]:		
REQUIRED*		You can drag and drop files here to add them.
	[6 marks]	

Draw a sketch of the causal function f(t) from Question 2 (see above), labelling the axes appropriately. Please

[3 marks]

scan your plot and upload it below.*

STACK: Adaptive Multi-part Questions

An electrical LC circuit (see the diagram) consists of a serially connected capacitor with capacitance $C = \frac{2}{6}$ and an inductor with inductance L =(both given in normalised dimensionless units).

At time t = 0 there is no charge at the capacitor and no electric current in the circuit. An external voltage V(t) (in dimensionless units) is applied to the circuit, increasing linearly from V(t=0) = 0 to $V(t=t_0) = V_0$, and is then kept constant after that time ($V = V_0$ for $t > t_0$; see the plot).

Here $t_0 = 4$ and $V_0 = 108$ (in dimensionless units).

(i) Express the externally applied voltage V(t) as a function of time for t > 0. Use u(t) to denote the unit step function in your answer: $V(t) = |\mathsf{REQUIRED}^*|$ (express your answer as a function of t)

(ii) Assuming the electric current I(t) in the circuit described above obeys the equation

$$rac{1}{2}\,rac{{
m d}\,I(t)}{{
m d}\,t}\,+\,rac{9}{2}\,\int_{0}^{\,t}I(au)\,d au\,=\,V(t)\,,$$

I(t)

[3 marks]

Learning Outcomes

Statistics

- Robust semi-automatic marking
- Quantitative analysis of learning outcomes

Statistics

- Robust semi-automatic marking
- Quantitative analysis of learning outcomes
 - 2019/20: early engagement is a predictor of success
 - 2020/21: sustained engagement is a predictor of success

Feedback

- "The Milestones were also well integrated with Piazza and gave a quick overview of what you've learned by taking the course."
- "Piazza forum is a nice idea so answers to questions can be seen by everyone."
- "The practice exam was a good opportunity to check for any gaps in knowledge before attempting the assessed version."
- "I found the feedback solutions very detailed and helpful."
- "[...] to master the skills of accurate output of our mathematical knowledge, to apply them in real-life problems."
- "The additional content was cool too, although it was hard for me to give it any real attention with the need to prioritise core content."
- "I would say the amount of work was quite hefty."

Summary & Outlook

- The e-learning environment for Maths is a continuum
- Active learning can be quantified
- The extra effort pays off for large classes.

Thank you for listening!

- STACK: <u>stack-assessment.org</u>
- Piazza: piazza.com
- FSE e-Learning Portal: <u>elearning.fse.manchester.ac.uk</u>